Nonequilibrium Statistical Mechanics of the Zero - Range Process and Related Models

نویسنده

  • T. Hanney
چکیده

We review recent progress on the zero-range process, a model of interacting particles which hop between the sites of a lattice with rates that depend on the occupancy of the departure site. We discuss several applications which have stimulated interest in the model such as shaken granular gases and network dynamics, also we discuss how the model may be used as a coarse-grained description of driven phase-separating systems. A useful property of the zero-range process is that the steady state has a factorised form. We show how this form enables one to analyse in detail condensation transitions, wherein a finite fraction of particles accumulate at a single site. We review condensation transitions in homogeneous and heterogeneous systems and also summarise recent progress in understanding the dynamics of condensation. We then turn to several generalisations which also, under certain specified conditions, share the property of a factorised steady state. These include several species of particles; hop rates which depend on both the departure and the destination sites; continuous masses; parallel discrete-time updating; non-conservation of particles and sites. PACS numbers: 05.40.-a, 05.70.Fh, 02.50.Ey, 64.60.-i, 64.75.+g

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonequilibrium Statistical Mechanics of the Zero-Range Process and Application to Networks

Statistical mechanics is concerned with the study of systems with a large number of interacting constituents. Equilibrium statistical mechanics, originally introduced as a theoretical approach for thermodynamics, is well understood and a general theoretical framework exists. Nonequilibrium statistical mechanics is less well understood and no general theoretical framework currently exists. The s...

متن کامل

1 4 Ja n 20 05 Nonequilibrium Statistical Mechanics of the Zero - Range Process and Related Models

We review recent progress on the zero-range process, a model of interacting particles which hop between the sites of a lattice with rates that depend on the occupancy of the departure site. We discuss several applications which have stimulated interest in the model such as shaken granular gases and network dynamics, also we discuss how the model may be used as a coarse-grained description of dr...

متن کامل

Equilibrium and nonequilibrium properties of systems with long-range interactions

We briefly review some equilibrium and nonequilibrium properties of systems with long-range interactions. Such systems, which are characterized by a potential that weakly decays at large distances, have striking properties at equilibrium, like negative specific heat in the microcanonical ensemble, temperature jumps at first order phase transitions, broken ergodicity. Here, we mainly restrict ou...

متن کامل

Mesoscopic virial equation for nonequilibrium statistical mechanics

We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (Langevin) and deterministic (Nosé–Hoover) dynamics, and to extend to collective modes for models of heat-conducting lattices. A macroscopic virial t...

متن کامل

Phase Transitions in one-dimensional nonequilibrium systems

The phenomenon of phase transitions in one-dimensional systems is discussed. Equilibrium systems are reviewed and some properties of an energy function which may allow phase transitions and phase ordering in one dimension are identified. We then give an overview of the one-dimensional phase transitions which have been studied in nonequilibrium systems. A particularly simple model, the zero-rang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005